Text Generation Finetuning
HappyTextGeneration contains two methods for training
- train(): fine-tune the model to understand a body of text better
- eval(): determine how well the model performs
train()
inputs:
- input_filepath (string): a path file to a text file that contains nothing but text to train the model.
- args (GENTrainArgs): a dataclass with the same fields types as shown in Table 1.1.
Table 1.1
Parameter | Default |
---|---|
learning_rate | 5e-5 |
num_train_epochs | 3 |
batch_size | 1 |
weight_decay | 0 |
adam_beta1 | 0.9 |
adam_beta2 | 0.999 |
adam_epsilon | 1e-8 |
max_grad_norm | 1.0 |
save_preprocessed_data | False |
save_preprocessed_data_path | ”” |
load_preprocessed_data | False |
load_preprocessed_data_path | ”” |
preprocessing_processes | 1 |
fp16 | False |
Information about the learning parameters can be found here
Information about saving/loading preprocessed data can be found here
preprocessing_processes: Number of processes used for preprocessing. We recommend 1-4.
Example 1.3:
from happytransformer import HappyGeneration, GENTrainArgs
# --------------------------------------#
happy_gen = HappyGeneration()
args = GENTrainArgs(num_train_epochs=1)
happy_gen.train("../../data/gen/train-eval.txt", args=args)
eval()
Input:
- input_filepath (string): a path file to a text file with just text to evaluate
- args (WPEvalArgs): a dataclass with the same fields shown in Table 1.2
Table 1.2
Parameter | Default |
---|---|
save_preprocessed_data | False |
save_preprocessed_data_path | ”” |
load_preprocessed_data | False |
load_preprocessed_data_path | ”” |
preprocessing_processes | 1 |
See the explanations under Table 1.1 for more information
Output: An object with the field “loss”
Example 1.4
from happytransformer import HappyGeneration, GENEvalArgs
# --------------------------------------#
happy_gen = HappyGeneration()
args = GENEvalArgs(preprocessing_processes=2)
result = happy_gen.eval("../../data/gen/train-eval.txt", args=args)
print(type(result)) # <class 'happytransformer.happy_trainer.EvalResult'>
print(result) # EvalResult(loss=3.3437771797180176)
print(result.loss) # 3.3437771797180176